Welcome!

References

Study set attributes

Power sample generation

Power sample

Computing the p-value

show with app
# app.R
#
# Input: texts.txt
#
# by: Paul Wellingerhof, 24th August 2018

library(shiny)
library(shinydashboard)

options(width=10000)

##################
### load files ###
##################

# this file already includes a bit of HTML-formatting to improve this R-code's
# readability

txt <- strsplit(paste(readLines("texts.txt"), collapse=" "),
  "<!-- [[:alnum:]]* -->")[[1]][-1]

##########
### ui ###
##########

### ui-input

# --- Demonstrations --- #

# Publication Bias Test
inSetSize <- sliderInput("nrepl", "How big is the set of studies?",
  1, 10, 8, 1)

inPropSig <- sliderInput("propsig",
  "How many of the 8 studies are significant?", 0, 8, 7, 1)

inBetaMode <- sliderInput("pmax", "Mode of the Beta distribution",
  0, 1, .5, .05)

inShapeSum <- sliderInput("shapesum", paste("Sum of the two shape parameters",
  "of the Beta distribution (dispersion)"), 10, 200, 10, 1)

# Identify Publication Bias
shoPow <- checkboxInput("shopow", "Show power values", FALSE)

setSelOne <- selectInput("setsel1", label="", choices=c("", "1. Set",
  "2. Set", "3. Set"))

setSelTwo <- selectInput("setsel2", label="", choices=c("", "1. Set",
  "2. Set", "3. Set"))

setSelThree <- selectInput("setsel3", label="", choices=c("", "1. Set",
  "2. Set", "3. Set"))

resetBut <- actionButton("resetbut", "Reset")

submitBut <- actionButton("submitbut", "Submit!",
  style="color:#ffffff;background-color:#337ab7;border-color:#2e6da4")

# --- Data Input --- #

inPropSigDI <- sliderInput("propsigDI",
  "How many of the studies were significant?", 0, 10, 5, 1)

pbtBut <- actionButton("pbtbut", "Publication Bias Test!",
  style="color:#fff; background-color:#ea8100;border-color:#ce7100")


### ui-page

ui <- dashboardPage(

  # HEADER
  dashboardHeader(title="Excess of Success"),
  
  # SIDEBAR
  dashboardSidebar(
    sidebarMenu(id="tabs",
      
      # --- Welcome --- #
      menuItem("Welcome!", tabName="welcome", icon=icon("info-circle")),
      
      # --- Introduction --- #
      menuItem("Introduction", tabName="intro", icon=icon("align-left")),
      
      # --- Demonstrations --- #
      menuItem("Demonstrations", tabName="demons", icon=icon("child"),
        # Publication Bias Test
        menuSubItem("Publication Bias Test", tabName="powsums"),
        # Identify Publication Bias
        menuSubItem("Identify Publication Bias", tabName="sets")
      ),
      
      # --- Data Input --- #
      menuItem("Data Input", tabName="userin", icon=icon("file"))
    )
  ),
  
  # BODY
  dashboardBody(

    # make tick green and cross red (Identify Publication Bias)
    tags$style(".fa-check {color:#15ff00}"),
    tags$style(".fa-times {color:#ff0000}"),

    tabItems(
      
      # --- Welcome --- #
      tabItem(tabName="welcome",
        fluidRow(
          box(
            title="Welcome!", width=4, htmlOutput("welcometxt")
          )
        )
      ),
      
      # --- Introduction --- #
      tabItem(tabName="intro",
        fluidRow(
          column(width=4,
            box(
              width=NULL, htmlOutput("intro1")
            ),
            box(
              width=NULL, htmlOutput("intro2")
            )
          ),
          column(width=4,
            box(
              width=NULL, htmlOutput("intro3")
            )
          ),
          column(width=4,
            box(
              width=NULL, htmlOutput("intro4")
            ),
            box(
              title="References", width=NULL, htmlOutput("refs")
            )
          )
        )
      ),
      
      # --- Demonstrations --- #

      # Publication Bias Test #
      tabItem(tabName="powsums",
        fluidRow(
          column(width=4,
            box(width=NULL,
              htmlOutput("PBT1")
            ),
            box(title="Study set attributes", width=NULL,
              inSetSize, inPropSig
            ),
            box(title="Power sample generation", width=NULL,
              inBetaMode, inShapeSum, plotOutput("betadist")
            )
          ),
          column(width=8,
            box(title="Power sample", width=NULL,
              column(width=6, htmlOutput("info")),
              column(width=6, plotOutput("sampledist"))
            ),
            box(title=HTML("Computing the <i>p</i>-value"), width=NULL,
              column(width=9, htmlOutput("combmat")),
              column(width=3, htmlOutput("pval"))
            )
          )
        )
      ),

      # Identify Publication Bias
      tabItem(tabName="sets",
        fluidRow(
          column(width=4,
            box(width=NULL,
              htmlOutput("setsintro")
            )
          ),
          column(width=8,
            box(width=NULL,
              shoPow,
              column(width=4, tableOutput("settab1"), setSelOne,
                uiOutput("rslt1"), htmlOutput("sol1"), resetBut),
              column(width=4, tableOutput("settab2"), setSelTwo,
                uiOutput("rslt2"), htmlOutput("sol2")),
              column(width=4, tableOutput("settab3"), setSelThree,
                uiOutput("rslt3"), htmlOutput("sol3"), submitBut)
            )
          )
        )
      ),
      
      # --- Data Input --- #

      tabItem(tabName="userin",
        fluidRow(
          column(width=4,
            box(width=NULL,
              htmlOutput("DIintro"), fileInput("powerdat", ""),
              inPropSigDI, pbtBut
            )
          ),
          column(width=8,
            box(width=NULL,
              column(width=6, htmlOutput("combmatDI")),
              column(width=6, htmlOutput("pvalDI"),
                plotOutput("sampledistDI"), htmlOutput("powsumtext"))
            )
          )
        )
      )
    )
  )
)

##############
### server ###
##############

server <- function(input, output, session){
  
  # --------- Welcome --------- #
  
  # text: WELCOME
  output$welcometxt <- renderUI({
    HTML(txt[1])
  })
  
  # --------- Introduction --------- #
  
  # text: INTRO1
  output$intro1 <- renderUI({
    HTML(txt[2])
  })
  
  # text: INTRO2
  output$intro2 <- renderUI({
    HTML(txt[3])
  })

  # text: INTRO3
  output$intro3 <- renderUI({
    HTML(txt[4])
  })

  #table: INTRO4
  output$intro4 <- renderUI({
    HTML(txt[5])
  })

  # text: REFERENCES
  output$refs <- renderUI({
    HTML(txt[6])
  })

  # --------- Demonstrations --------- #
  
  ########## Publication Bias Test ###########

  # output: SMALL INTRO TEXT FOR PBT

  output$PBT1 <- renderUI({
    HTML(txt[7])
  })

  # observeEvent: DEPENDENT PROPORTION SIGNIFICANT SLIDER
  observeEvent(input$nrepl, {
    
    if(input$propsig > input$nrepl) newPropsig <- 1
    else newPropsig <- input$propsig

    updateSliderInput(session, inputId="propsig", max=input$nrepl,
      value=newPropsig, label=paste("How many of the", input$nrepl,
      "studies are significant?"), step=1)

  })

  # reactive: POWERSAMPLE & COMBINATION-MATRIX
  powlist <- reactive({
    
    # sampling
    vec <- round(rbeta(input$nrepl,
      # alpha-parameter
      shape1=input$pmax*(input$shapesum - 2) + 1,
      # beta-parameter
      shape2=input$shapesum - (input$pmax*(input$shapesum - 2) + 1)),
      3
    )
    
    # distribution
    ps <- sapply(0:length(vec),
      function(i) dbinom(i, length(vec), mean(vec)))

    # combination-matrix
    pow <- vec
    beta <- 1 - pow
    allCombs <- as.matrix(expand.grid(rep(list(0:1), input$nrepl)))
    combsPow <- allCombs[sapply(1:nrow(allCombs),
      function(i) sum(allCombs[i, ])) >= input$propsig, , drop=FALSE]
    combsBeta <- 1 - combsPow
    
    if(input$nrepl == 1 && input$propsig == 0){

      mPB <- t(t(sapply(1:nrow(combsPow), function(i) combsPow[i, ]*pow)))
      mB <- t(t(sapply(1:nrow(combsBeta), function(i) combsBeta[i, ]*beta)))
    
    } else {
      
      mPB <- t(sapply(1:nrow(combsPow), function(i) combsPow[i, ]*pow))
      mB <- t(sapply(1:nrow(combsBeta), function(i) combsBeta[i, ]*beta))
    
    }

    mPB[mPB == 0] <- mB[mB != 0]
    mPB <- cbind(mPB, apply(mPB, 1, prod))
    
    attr(mPB, "dimnames") <- list(Combination=1:nrow(mPB),
      Study=c(1:input$nrepl, "Product"))

    # p-value
    p <- sum(mPB[, ncol(mPB)])

    # list output
    list(vec=vec, ps=ps, max=which.max(ps) - 1, mPB=mPB, p=p)

  })
  
  # output: BETA DISTRIBUTION
  output$betadist <- renderPlot({
    
    par(mai=c(.8, .8, .5, .2), mgp=c(2, .7, 0))

    curve(dbeta(x,
      input$pmax*(input$shapesum - 2) + 1,
      input$shapesum - (input$pmax*(input$shapesum - 2) + 1)),
      xlab="Power value", ylab="Density",
      main="Beta Probability-Density-Function")

  })

  # output: SAMPLE DISTRIBUTION
  output$sampledist <- renderPlot({

    par(mai=c(.8, .8, .5, .2), mgp=c(2, .7, 0))

    plot(0:input$nrepl, powlist()$ps, type="h", col="blue", ylim=c(0, 1),
      axes=FALSE, xlab="Number of successful replications (n)",
      ylab="P(X = n)", xlim=c(-.25, length(powlist()$vec) + .25),
      main="Sample Probability Distribution")
    if (input$nrepl <= 10) axis(1, at=0:input$nrepl)
    else axis(1)
    axis(2)
    abline(v=sum(powlist()$vec), col="red", lty=2)
    legend("topleft", legend="Sum of Power values", col="red", lty=2, bty="n")
    graphics::box()

  })

  # output: TEXT (powersample & its statistics)
  output$info <- renderUI({
    
    # labels
    labels <- c(
      "Power vector",
      "Sum of Power values ~ n, where P(X = n) maximal",
      "Sample Mean, Sample Standard Deviation"
      )
    labels <- gsub("$", "</b></br>", gsub("^", "<b>", labels))

    # values
    vals <- c(
      gsub("(.{55,}?)\\s", "\\1<br/>",
        paste(format(powlist()$vec), collapse=" ")),
      paste(sum(powlist()$vec), "~", powlist()$max),
      paste0("<i>M</i> = ", round(mean(powlist()$vec), 3), ", <i>SD</i> = ",
        round(sd(powlist()$vec), 3))
      )
    vals <- gsub("$", "</pre>",
      gsub("^", "<pre>", vals))
    HTML(paste(labels, vals))

  })

  # output: COMBINATION-MATRIX
  output$combmat <- renderUI({
    
    HTML(paste("<pre style='height:20em'>", 
      paste(gsub("$", "</br>", capture.output(powlist()$mPB)), collapse=""),
      "</pre>", collapse="")
    )

  })

  # output: P-VALUE
  output$pval <- renderUI({
    withMathJax(
      sprintf("The result of summing up the product column is $$p = %.03f.$$",
        powlist()$p
      )
    )
  })

  ########## Identify Publication Bias ###########
  
  # output: INTRO TEXT FOR SETS
  output$setsintro <- renderUI({
    HTML(txt[8])
  })

  # reactive: TABLE (set 1)
  tabs <- reactive({
    input$resetbut
    isolate({

      # set 1
      set1 <- data.frame(study=1:20, n=10, g.est=0, alpha=.05, t=0, p=1,
        sig=0)
      
      for(s in 1:nrow(set1)){
        samp1 <- rnorm(set1$n[s])
        samp2 <- rnorm(set1$n[s])
        while(set1$sig[s] == 0){
          pval <- t.test(samp1, samp2, var.equal=TRUE)$p.value
          if (pval < set1$alpha[s]){
            set1$g.est[s] <- -diff(t.test(samp1, samp2,
              var.equal=TRUE)$estimate)
            set1$t[s] <- t.test(samp1, samp2, var.equal=TRUE)$statistic
            set1$p[s] <- pval
            set1$sig[s] <- 1
          } else-if (set1$n[s] == 30) {
            set1$g.est[s] <- -diff(t.test(samp1, samp2,
              var.equal=TRUE)$estimate)
            set1$t[s] <- t.test(samp1, samp2,var.equal=TRUE)$statistic
            set1$p[s] <- pval
            break
          } else {
            set1$n[s] <- set1$n[s] + 1
            samp1[set1$n[s]] <- rnorm(1)
            samp2[set1$n[s]] <- rnorm(1)
          }
        }
      }
      
      idx1 <- sort(as.numeric(row.names(set1[order(set1$p), ][1:5, ])))
      set1 <- set1Pow <- round(set1[idx1, c(2, 3, 5:7)], 3)
      set1Pow$power <- sapply(1:nrow(set1),
        function(i) round(power.t.test(set1$n[i], set1$g.est[i])$power, 3))

      # set 2
      set2 <- data.frame(study=1:100, n=sample(10:30, 100, TRUE), g.est=.1,
        alpha=.05, t=0, p=1, sig=0)
      
      for(s in 1:nrow(set2)){
        tres <- t.test(rnorm(set2$n[s]), rnorm(set2$n[s], .1), var.equal=TRUE)
        set2$g.est[s] <- -diff(tres$estimate)
        set2$t[s] <- tres$statistic
        set2$p[s] <- tres$p.value
        if(set2$p[s] < set2$alpha[s]) set2$sig <- 1
      }
      
      idx2 <- sort(as.numeric(row.names(set2[order(set2$p), ][1:5, ])))
      set2 <- set2Pow <- round(set2[idx2, c(2, 3, 5:7)], 3)
      set2Pow$power <- sapply(1:nrow(set2),
        function(i) round(power.t.test(set2$n[i], set2$g.est[i])$power, 3))

      # set 3
      set3 <- data.frame(study=1:5, n=sample(10:30, 5, TRUE), g.est=.8,
        alpha=.05, t=0, p=1, sig=0)
      
      for(s in 1:nrow(set3)){
        tres <- t.test(rnorm(set3$n[s]), rnorm(set3$n[s], .8), var.equal=TRUE)
        set3$g.est[s] <- -diff(tres$estimate)
        set3$t[s] <- tres$statistic
        set3$p[s] <- tres$p.value
        if(set3$p[s] < set3$alpha[s]) set3$sig <- 1
      }
      
      set3 <- set3Pow <- round(set3[, c(2, 3, 5:7)], 3)
      set3Pow$power <- sapply(1:nrow(set3),
        function(i) round(power.t.test(set3$n[i], set3$g.est[i])$power, 3))

      set1Pow$n <- as.integer(set1Pow$n)
      set2Pow$n <- as.integer(set2Pow$n)
      set3Pow$n <- as.integer(set3Pow$n)
      list(tab1=set1Pow, tab2=set2Pow, tab3=set3Pow)
      
    })
  })

  setSamp <- reactive({
    input$resetbut
    isolate({
      sample(1:3)
    })
  })

  # output: SET1
  output$settab1 <- renderTable(digits=3, {
    if(input$shopow) tabs()[[setSamp()[1]]][, -5]
    else tabs()[[setSamp()[1]]][, -c(5, 6)]
  })

  # output: SET2
  output$settab2 <- renderTable(digits=3, {
    if(input$shopow) tabs()[[setSamp()[2]]][, -5]
    else tabs()[[setSamp()[2]]][, -c(5, 6)]
  })

  # output: SET3
  output$settab3 <- renderTable(digits=3, {
    if(input$shopow) tabs()[[setSamp()[3]]][, -5]
    else tabs()[[setSamp()[3]]][, -c(5, 6)]
  })
  
  # observeEvent: RESET SELECTIVE INPUT
  observeEvent(input$resetbut, {
    updateSelectInput(session, "setsel1", selected="")
    updateSelectInput(session, "setsel2", selected="")
    updateSelectInput(session, "setsel3", selected="")
    output$rslt1 <- renderUI({})
    output$rslt2 <- renderUI({})
    output$rslt3 <- renderUI({})
    output$sol1 <- renderUI({})
    output$sol2 <- renderUI({})
    output$sol3 <- renderUI({})
  })

  # reactive: RESULTS
  observeEvent(input$submitbut, {
    
    # output: ICON1
    output$rslt1 <- renderUI({
      isolate(
        if(substr(input$setsel1, 1, 1) == as.character(setSamp()[1])){
          icon("check")
        } else {
          icon("times")
        }
      )
    })

    # output: ICON2
    output$rslt2 <- renderUI({
      isolate(
        if(substr(input$setsel2, 1, 1) == as.character(setSamp()[2])){
          icon("check")
        } else {
          icon("times")
        }
      )
    })

    # output: ICON1
    output$rslt3 <- renderUI({
      isolate(
        if(substr(input$setsel3, 1, 1) == as.character(setSamp()[3])){
          icon("check")
        } else {
          icon("times")
        }
      )
    })

    # output: SOLULTION1
    output$sol1 <- renderUI({
      HTML(paste0("Solution: This is the ", setSamp()[1], ". set."))
    })

    # output: SOLUTION2
    output$sol2 <- renderUI({
      HTML(paste0("Solution: This is the ", setSamp()[2], ". set."))
    })

    # output: SOLUTION3
    output$sol3 <- renderUI({
      HTML(paste0("Solution: This is the ", setSamp()[3], ". set."))
    })
  })

  # --------- Data Input --------- #

  # output: DI-INTRO
  output$DIintro <- renderUI({
    HTML(txt[9])
  })

  # reactive: POWER DATAFRAME
  powdat <- reactive({
    file <- input$powerdat

    if(is.null(file)) return()

    dat <- read.table(file$datapath, header=TRUE)
    # if(ncol(dat) > 1 | class(dat[, 1]) != "numeric") return()
    dat

  })

  # observeEvent: PROPORTION SIGNIFICANT DI
  observeEvent(input$powerdat, {
    updateSliderInput(session, "propsigDI", max=nrow(powdat()))
  })

  # reactive: COMBINATION MATRIX, P-VALUE
  pbtDI <- reactive({
    pow <- powdat()[, 1]
    beta <- 1 - pow
    allCombs <- as.matrix(expand.grid(rep(list(0:1), length(pow))))
    combsPow <- allCombs[sapply(1:nrow(allCombs),
      function(i) sum(allCombs[i, ])) >= input$propsigDI, , drop=FALSE]
    combsBeta <- 1 - combsPow
    
    if(length(pow) == 1 && input$propsigDI == 0){

      mPB <- t(t(sapply(1:nrow(combsPow), function(i) combsPow[i, ]*pow)))
      mB <- t(t(sapply(1:nrow(combsBeta), function(i) combsBeta[i, ]*beta)))
    
    } else {
      
      mPB <- t(sapply(1:nrow(combsPow), function(i) combsPow[i, ]*pow))
      mB <- t(sapply(1:nrow(combsBeta), function(i) combsBeta[i, ]*beta))
    
    }

    mPB[mPB == 0] <- mB[mB != 0]
    mPB <- cbind(mPB, apply(mPB, 1, prod))
    
    attr(mPB, "dimnames") <- list(Combination=1:nrow(mPB),
      Study=c(1:length(pow), "Product"))
    
    # distribution
    ps <- dbinom(0:length(pow), length(pow), mean(pow))

    # p-value
    p <- sum(mPB[, ncol(mPB)])

    list(mPB=mPB, p=p, ps=ps, pow=pow, max=which.max(ps) - 1)

  })
  
  # observeEvent: ALL DI PBT OUTPUTS
  observeEvent(input$pbtbut, {

    # output: COMBINATION MATRIX DI
    output$combmatDI <- renderUI({
      
      HTML(paste("<pre style='height:40em'>", 
        paste(gsub("$", "</br>", capture.output(pbtDI()$mPB)), collapse=""),
        "</pre>", collapse="")
      )

    })

    # output: P-VALUE DI
    output$pvalDI <- renderUI({
      withMathJax(
        sprintf(
          "The result of summing up the product column is $$p = %.03f.$$",
          pbtDI()$p
        )
      )
    })

    # output: SAMPLE DISTRIBUTION
    output$sampledistDI <- renderPlot({

      par(mai=c(.8, .8, .5, .2), mgp=c(2, .7, 0))

      plot(0:length(pbtDI()$pow), pbtDI()$ps, type="h", col="blue",
        ylim=c(0, 1), axes=FALSE,
        xlab="Number of successful replications (n)",
        ylab="P(X = n)", xlim=c(-.25, length(pbtDI()$pow) + .25),
        main="Sample Probability Distribution")
      if (length(pbtDI()$pow) <= 10) axis(1, at=0:length(pbtDI()$pow))
      else axis(1)
      axis(2)
      abline(v=sum(pbtDI()$pow), col="red", lty=2)
      legend("topleft", legend="Sum of Power values", col="red", lty=2,
        bty="n")
      graphics::box()

    })

    # output: POWSUM TEXT
    output$powsumtext <- renderUI({
      HTML(paste(tags$b("Sum of Power values ~ n, where P(X = n) maximal"),
        "<pre>", sum(pbtDI()$pow), " ~ ", pbtDI()$max, "</pre>", collapse=""))
    })

  })

}

################
### shinyApp ###
################

shinyApp(ui, server)